
BERALMAR TECNOLOGIC S.A.

>>> USE OF ALTERNATIVE COMBUSTION TECHNOLOGIES

BERALMAR TECNOLOGIC S.A.

>>> SANTI AMPOSTA
R&D Manager
with Beralmar since 1992

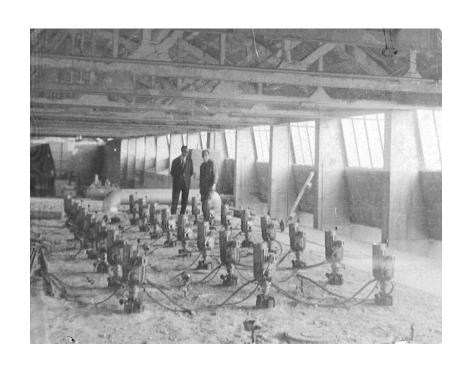
>>> MIQUEL MOIX
Sales Area Manager
with Beralmar since 2002

OUR COMPANY

Beralmar

OUR COMPANY

1964 - 2014


¹¹ BERALMAR manufactures heavy-oil burners for hoffmann kilns ³³

1 product

Workshop of a partner brickyard

<5 employees

Customers only in Spain

HISTORY 1964-2014

- **60's**: Foundation in 1964. Manufacturing of heavy-oil injectors.
- **70's**: Natural gas distribution arrives to many brickyards in Spain. Beralmar starts manufacturing gas burners. First supply of combustion equipment for dryers.
- **80's**: Development of automatic control systems for dryers and kilns.
- **90's**: Development of solid fuel firing systems. Foundation of Technical Office for Kilns and Dryers.
- **2000's**: Foundation of the Technical Office of Automations. Beralmar is able to supply complete plants.

BERALMAR designs, manufactures and supplies equipment and engineering for the brick and tile industry (heavy clay ceramics)

Full product range
Workshop of 4.200 sqm
>70 employees
Customers in over 50
countries

Beralmar

Beralmar

LAY TECH UK

Beralmar

>> MANAGEMENT

RAMON SARIÓ and CRISTÒFOL CAPARRÓS -Managing Directors since 1982.

Sole shareholders.

Full-time and exclusive dedication.

- >>> PROFESSIONAL TEAM
- >70 full time employees, of which:
 - 30% college graduates.
 - 90% providing direct customer service.

SCOPE OF SUPPLY

>>> Equipment

>>> Engineering

Firing equipment

Kilns

Drying equipment

Dryers

Automations

Complete plants

GAS BURNERS for hoffmann kilns

High speed and impulsion.

GAS BURNERS for tunnel kilns

The widest range: top, lateral, high speed, impulsion, etc.

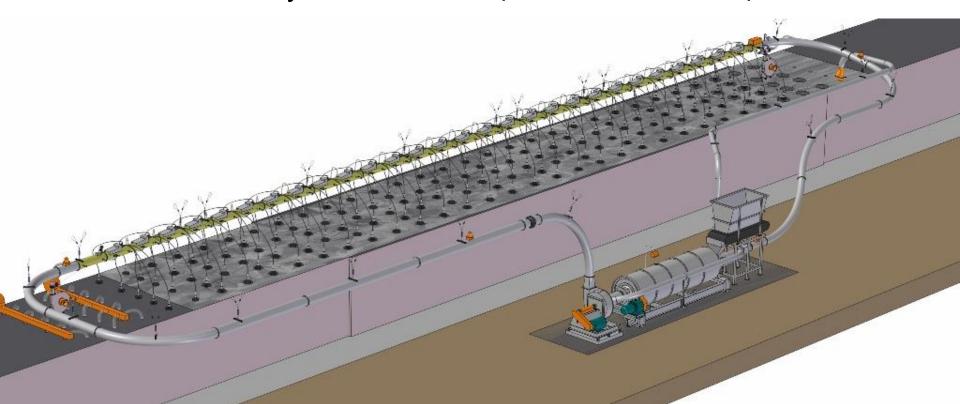
HEAVY OIL BURNERS

for Hoffmann kilns

for Tunnel kilns

SOLID FUEL BURNERS for hoffmann kilns

old GQS/82 model


new GQS/82 model

SOLID FUEL BURNERS for tunnel kilns

PROMATIC System – consumption of raw coals or petcoke

SOLID FUEL BURNERS for tunnel kilns

MICROMATIC System – consumption of micronized petcoke

SOLID FUEL BURNERS for tunnel kilns

BIOMATIC System – consumption of biomass

ALL KIND OF VENTILATORS for the drying process

Conical

Axial

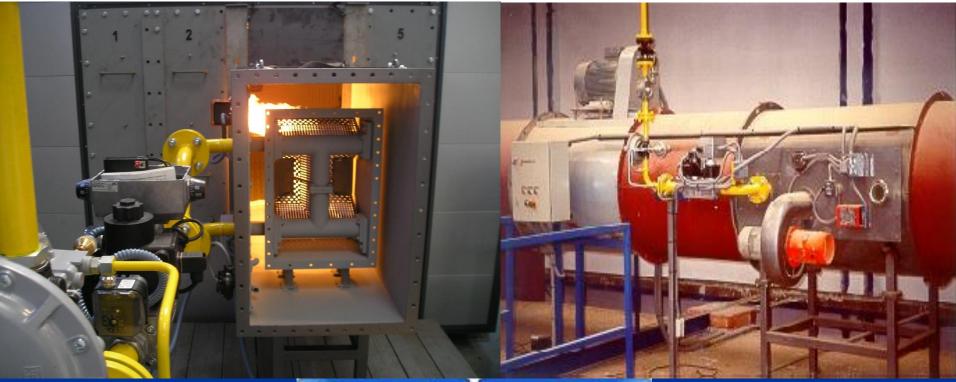
Fixed

Traveling

All sizes

All powers

HEAT GENERATORS for all kind of fuels


NATURAL GAS - PROPANE

HEAT GENERATORS for all kind of fuels

NATURAL GAS - PROPANE - BIOGAS

HEAT GENERATORS for all kind of fuels
HEAT EXCHANGERS FOR **HEAVY OIL - DIESEL**

HOT, CLEAN AIR FOR THE DRYER

70-80% EFFICIENCY

HEAT GENERATORS for all kind of fuels
HEAT EXCHANGERS FOR **SOLID FUELS**

HOT, CLEAN AIR FOR THE DRYER

70-80% EFFICIENCY

HEAT GENERATORS for all kind of fuels

COMBUSTION CHAMBERS FOR **HEAVY OIL - DIESEL**

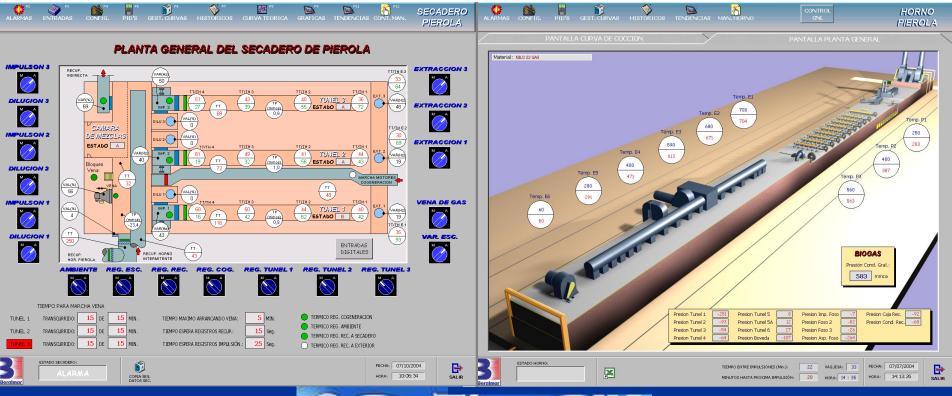
DIRECT FUEL COMBUSTION

99% EFFICIENCY

HEAT GENERATORS for all kind of fuels
COMBUSTION CHAMBERS FOR **SOLID FUELS**

DIRECT FUEL COMBUSTION

99% EFFICIENCY

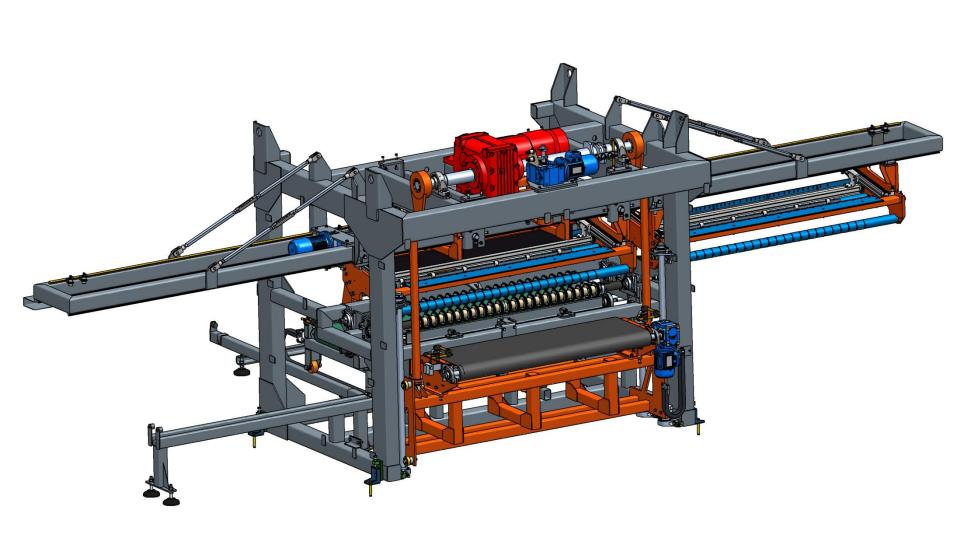

EQUIPMENT – Control

Automatic control management of drying and firing

DRYER CONTROL

KILN CONTROL

EQUIPMENT – Automations




DESIGN AND MANUFACTURING OF ALL KIND OF AUTOMATIONS:

- CUTTING
- DRYER LOADING AND UNLOADING
- KILN CAR SETTING AND DEHACKING
- PACKAGING
- ETC.

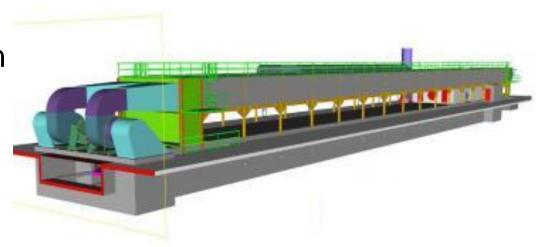
ENGINEERING

DRYERS - KILNS - COMPLETE PLANTS

JETDRYER

QUICK DRYER

- 3 to 8 hours drying
- Compact installation
- Low electrical consumption
- Horizontal flow



MIGJORN

QUICK DRYER

- 3 to 5 hours drying
- Compact installation
- Higher electrical consumption
- Vertical flow

MESTRAL

SEMICONTINUOUS DRYER WITH DRYER CARTS

- Flexible drying cycles
- Suitable for most kind of clays
- Recommended for frequently changing production parameters

GARBI

SEMICONTINUOUS DRYER WITH PLATFORMS

- Low investment
- Alternative to the classic semicontinuous dryer
- Flexible drying cycles

LLEVANT

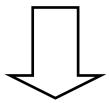
DIRECT SETTING OF GREEN BRICKS ON KILN CARS

- Low investment in automations
- Low energy consumption
- Easy management

CHAMBER DRYER

CHAMBERS WITH TRAYS OR DRYER CARTS

- Independent regulation of each chamber
- Interesting for a very wide scope of formats



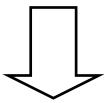
ENGINEERING – Kilns

FORNTHERMIC KILN

Traditional Design

Reliable facility:

- Quality materials
- Long operational life

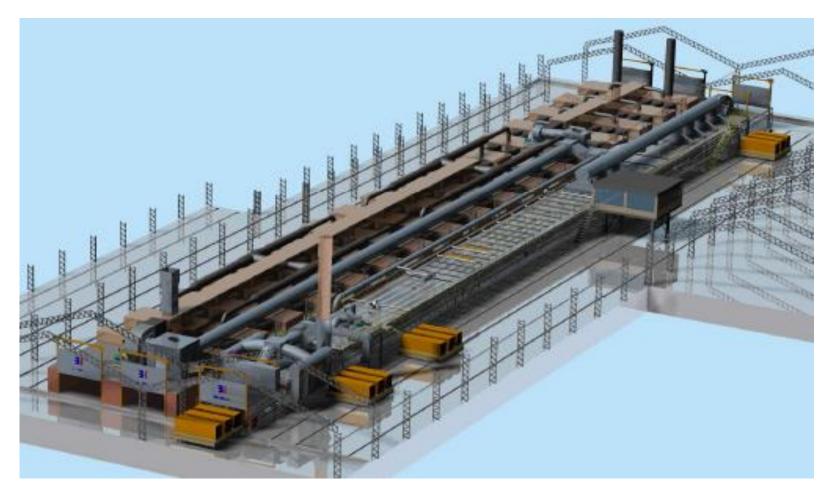


ENGINEERING – Kilns

PRESTHERMIC KILN

Hermetic Design

High performance:


- Low consumption
- High productivity

ENGINEERING – Complete Plants

REMARCABLE FACTS

Beralmar supplies combustion equipment for all type of fuels:

- Gaseous: natural gas, propane, biogas, syngas, etc.

Liquid: heavy-oil, diesel, recycled oils, etc.

Solid: coals, petcoke, biomass, etc.

For both drying and firing processes.

Unique case in our industry?

REMARCABLE FACTS

Beralmar supplies of all type of dryers:

Fast dryers: models JETDRYER and MIGJORN.

- Semi-continuous: models GARBÍ and MESTRAL.

Direct setting: model LLEVANT.

Chamber dryers.

Most suppliers specialize in 1 or 2 types of dryers.

Unique case in our industry?

ACCOMPLISHMENTS

>>> BERALMAR has supplied equipment to 54 countries

Europe: 19

Americas: 12 Asia: 12

Africa: 8

ACCOMPLISHMENTS

Since 1998, BERALMAR has supplied more than 40 kilns and 40 dryers, in 14 countries

Canada

Canada

Spain
Mexico
Morocco
El Salvador Cuba
Panama
Venezuela
Bolivia

Argentina

Russia

Kazakhstan

Kazakhstan

Qatar

Algeria

Argentina

ACCOMPLISHMENTS

>>> BERALMAR is market leader in solid fuel firing.

Equipment in more than 250 kilns since 1993, in 26 countries.

CURRENT PROJECTS (2014)

OAO KOMBINAT STROITELNIJ (Kansk - Russia)

Production: 20.000.000 units/year of solid bricks.

Dryer: direct setting on kiln cars mod. Llevant.

Tunnel kiln: mod. Presthermic. Fuel: mineral coal.

Automations: full automation line with robots.

CERÁMICAS DEL ESTE (Santa Cruz de la Sierra - Bolivia)

Production: 220.000 tn/year of hollow blocks.

Dryer: Semi-continuous mod. Mestral.

Tunnel kiln: mod. Fornthermic. Fuel: natural gas.

Production: 327.600 tn/year of hollow blocks.

Dryer: Semi-continuous mod. Mestral.

Tunnel kiln: mod. Presthermic. Fuel: natural gas.

Automations: full automation line with robots.

CURRENT PROJECTS (2014)

BRIQUETERIE AMRAOUA (Tizi Ouzou – Algeria)

Production: 126.000 tn/year of hollow blocks.

Dryer: Semi-continuous mod. Mestral.

Tunnel kiln: mod. Presthermic. Fuel: natural gas.

Automations: full automation line.

NUEVA CERÁMICA CAMPO (Villalonga – Spain)

Production: 50 tn/day of refractory products.

Tunnel kiln: mod. Presthermic firing at 1.400°C. Fuel: recycled oils

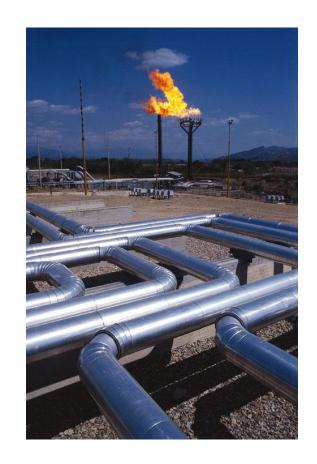
SEKRA CERAMICS (Novocheboksarsk – Russia)

Production: 30.000.000 units/year of klinker and facing bricks.

Dryer: Semi-continuous mod. Mestral.

Tunnel kiln: mod. Presthermic. Fuel: natural gas.

Automations: full automation line with robots.



NATURAL GAS IN THE UK

- Natural gas is the mainstream fuel in the UK.
- Technically, the best fuel there is: firing quality, logistics, etc.
- Price: 0,27 GBP/Nm³ (0,0268 GBP/kwh)*
- Heat Value: 8.600 Kcal/Nm³
- CO₂ emission factor: 56 tn CO₂/TJ

* Source: <u>www.gov.uk/government/statistical-data-sets/international-industrial-energy-prices</u>

ALTERNATIVES TO NATURAL GAS

- >>> PETROLEUM COKE
- >> MINERAL COAL
- » BIOMASS
- >>> BIOGAS
- >>> SYNTHESIS GAS (SYNGAS)
- >>> RECYCLED OILS

>>> PETROLEUM COKE

>>> PETROLEUM COKE – fuel characteristics

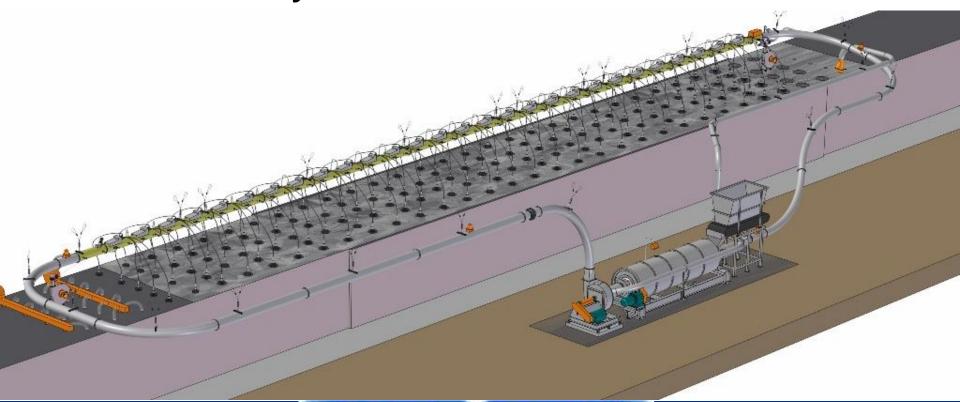
Solid fuel: grain size or micronised

LCV: 8.400 Kcal/kg – 35.000 Kj/kg

Ash content: < 1%

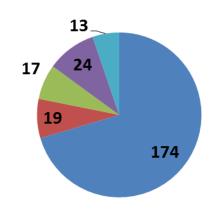
Sulphur content: < 1% available (depends on screening)

Price: around 160 GBP/ton (ground, transport)


included)

CO₂ emiss. factor: 98,3 tn CO₂/TJ

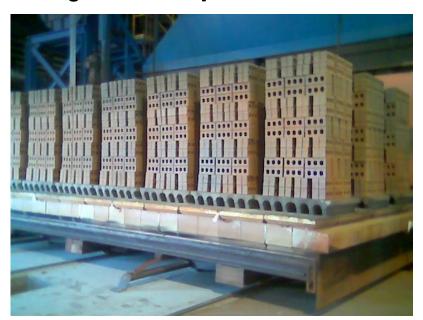
» PETROLEUM COKE – available technologies
PROMATIC System


>>> PETROLEUM COKE – available technologies **MICROMATIC System**

- » PETROLEUM COKE experience
 PROMATIC and MICROMATIC systems
- More than 250 references on tunnel kilns.
- Average of 1 commissioning per month since 1993.
- Most references are within the UE:

» PETROLEUM COKE – experience MICROMATIC w/ grinding at UNITED BRICK (IA, USA)

30% gas + **70% petcoke**



» PETROLEUM COKE – experience MICROMATIC w/ grinding at UNITED BRICK (IA, USA)

30% gas + **70% petcoke**

» PETROLEUM COKE – experience
MICROMATIC System at TRL KROSAKI (INDIA)

100% petcoke, fired at 1.650°C

» PETROLEUM COKE – experience
MICROMATIC System at TRL KROSAKI (INDIA)

100% petcoke, fired at 1.650°C

» PETROLEUM COKE – experience MICROMATIC System at TAYLOR BRICKS (NC, USA)

White facing brick: 70% NG + 30% petcoke

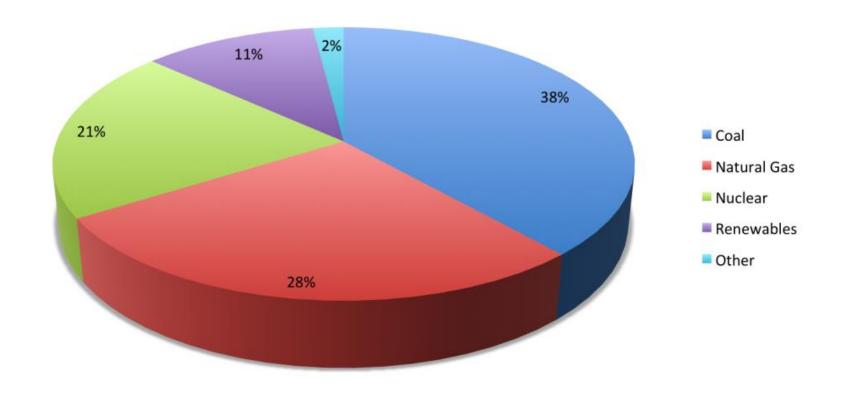
>>> PETROLEUM COKE – experience

MICROMATIC System at TAYLOR BRICKS (NC, USA)

Other formats: 50% NG + 50% petcoke

» PETROLEUM COKE – experience MICROMATIC System at TAYLOR BRICKS (NC, USA)

Other formats: 50% NG + 50% petcoke



>> MINERAL COAL

>>> MINERAL COAL – Energy Mix UK 2013

MINERAL COAL – fuel characteristics

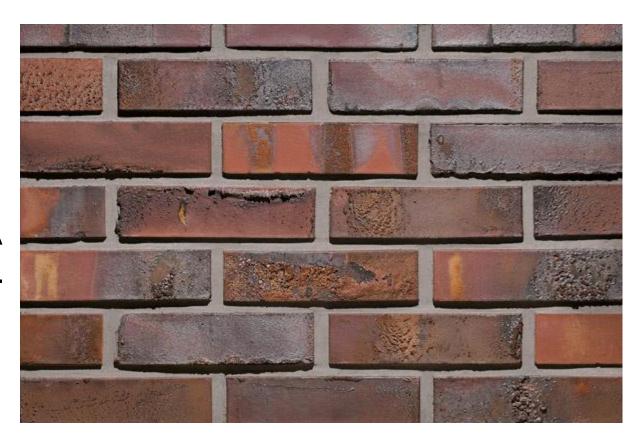
Solid fuel: grain size, wide range of coals.

LCV: > 5.500 Kcal/kg – 23.000 Kj/kg

available in the UK

Ash content: < 10% (ideally)

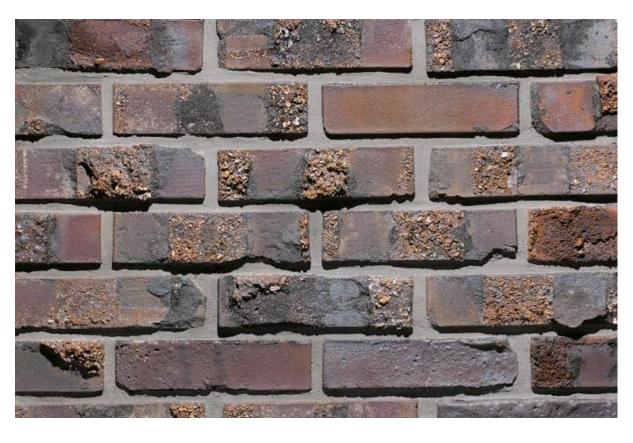
Price: ≈ 120 GBP/ton


CO₂ emission factor: 112 tn CO₂/TJ

MINERAL COAL – fuel characteristics

Examples of coal-fired facing bricks in the EU:

Plant: PATOKA (CRH), Poland.

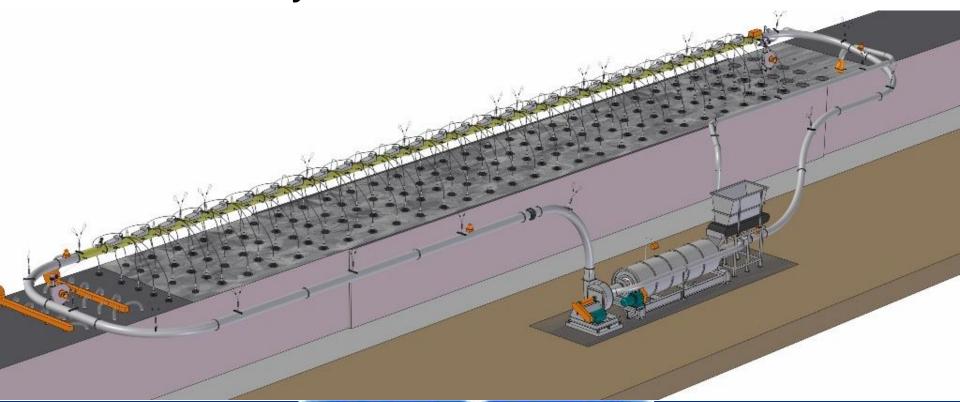


>> MINERAL COAL – fuel characteristics

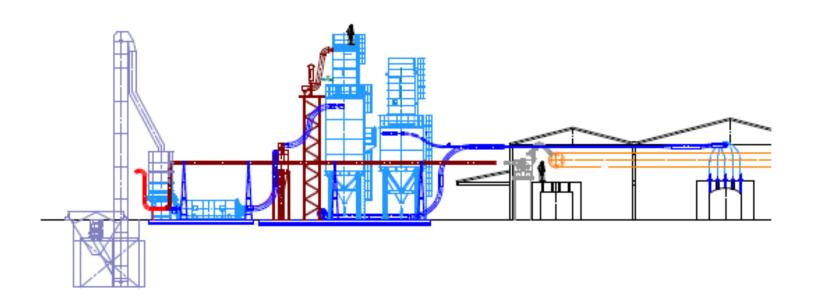
Examples of coal-fired facing bricks in the EU:

Plant: PATOKA (CRH), Poland.

MINERAL COAL – fuel characteristics

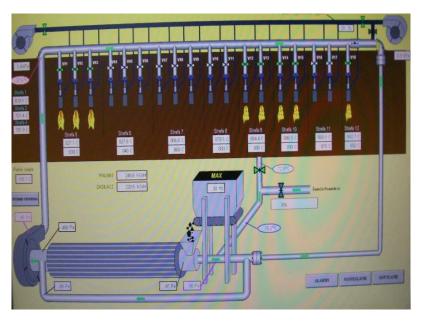

Examples of coal-fired facing bricks in the EU:

Plant: Steenfabriek Bemmel (Wienerberger) - Netherlands



» MINERAL COAL – available technologies
PROMATIC System

» MINERAL COAL – available technologies
MICROMATIC System with grinding of coal



>> MINERAL COAL – experience

PROMATIC System, at Wienerberger – Zielonka (Poland)

50% NG + **50% mineral coal**

>> MINERAL COAL – experience

PROMATIC System, at Wienerberger – Zielonka (Poland)

50% NG + **50% mineral coal**

>>> MINERAL COAL – experience

MICROMATIC System w/ coal grinding, at LADRILLERIA SANTA FE (Colombia) – 6 kilns – with NG + mineral coal

>>> MINERAL COAL – experience

MICROMATIC System w/ coal grinding, at LADRILLERIA SANTA FE (Colombia) – 6 kilns – with NG + mineral coal



» MINERAL COAL – experience

PROMATIC System, at BRIKOR (South Africa)

100% mineral coal

» MINERAL COAL – experience

PROMATIC System, at BRIKOR (South Africa)

100% mineral coal

>>> MINERAL COAL – experience

MICROMATIC System with coal grinding, at CERAMICA PRINCESA (Chile) – 2 kilns

25% NG + **75% coal**

>>> MINERAL COAL – experience

MICROMATIC System with coal grinding, at CERAMICA PRINCESA (Chile) – 2 kilns

25% NG + **75% coal**

» MINERAL COAL – experience
PROMATIC System, at ARBAN (Siberia, Russia)

100% mineral coal

>>> MINERAL COAL – experience

PROMATIC System, at ARBAN (Siberia, Russia)

100% mineral coal

» BIOMASS

» BIOMASS – fuel characteristics

Solid fuel: different sources and sizes

LCV: around 4.000 Kcal/kg – 16.750 Kj/kg

Ash content: 2-6%

Chemical comp.: depending on source

Price: 40-90 GBP/ton (ideally)

• CO₂ emiss. coef.: NEUTRAL

» BIOMASS – available technologies

BIOMATIC System

Solid fuel injection system for firing clay products with:

- · Biomass.
- Micronized petcoke.
- Mix of the previous fuels at whatever rate.

Any timely lack of sufficient biomass is completed by micronized petroleum coke (automatic regulation).

» BIOMASS – experience BIOMATIC System at CERAMICAS MIRA (Spain)

» BIOMASS – experience BIOMATIC System at CERAMICAS MIRA (Spain)

» BIOMASS – experience

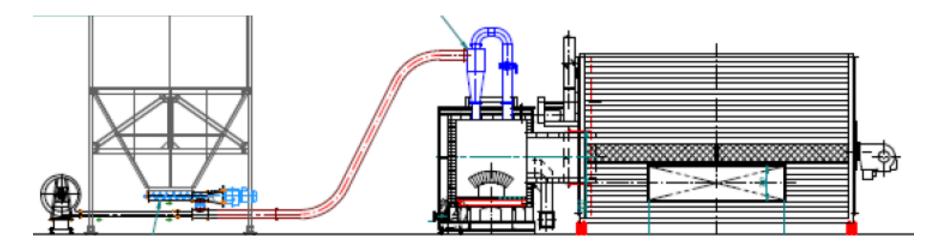
BIOMATIC System at CERAMICAS MIRA (Spain)

www.ceramicasmira.com

» BIOMASS – experience

Clean, hot air generation at TOP BANJA LUKA (Bosnia)
Model PULS+GB/2000

Fuel: Pellets


Heat Value: 4.000 Kcal/kg

100% substitution of 60 Tn of heavy-oil consumption per month.

» BIOMASS – experience
Clean, hot air generation at TOP BANJA LUKA (Bosnia)
Model PULS+GB/2000

» BIOMASS – experience

Clean, hot air generation at TOP BANJA LUKA (Bosnia)

Model PULS+GB/2000

<u>Feeder</u>

Dosing of fuel

Grinding of fuel

Pneumatic transport to combustion chamber

» BIOMASS – experience

Clean, hot air generation at TOP BANJA LUKA (Bosnia) Model PULS+GB/2000

Combustion chamber and heat exchanger

Combustion of fuel.

Exchange of heat from combustion smokes to ambience air.

Clean hot air (150°C) to dryer.

» BIOMASS – experience
Clean, hot air generation at CER. TETOUAN (Morocco)
Model PULS+GB/2000

Fuel: Olive pomace

Heat Value: 3.600 Kcal/kg

100% substitution of 90 Tn of heavy-oil consumption per month.

» BIOMASS – experience

Clean, hot air generation at CER. TETOUAN (Morocco)

Model PULS+GB/2000

Combustion chamber and heat exchanger

Combustion of fuel.

Exchange of heat from combustion smokes to ambience air.

Clean hot air (150°C) to dryer.

» BIOMASS – experience

Clean, hot air generation at WIENERBERGER – KUNIGAL (India)

Model GBS/1500

Fuel: Coconut shells, briquettes

Heat Value: 3.600 Kcal/kg

100% substitution of LNG consumption.

» BIOMASS – experience

Clean, hot air generation at WIENERBERGER – KUNIGAL (India)

Model GBS/1500

Heat exchanger with grill

Combustion of fuel.

Exchange of heat from combustion smokes to ambience air.

Clean hot air (150°C) to dryer.

» BIOMASS – experience

Clean, hot air generation at AG TECNO3 (Spain)

Model GBS/2000

Fuel: Almond shells

Heat Value: 3.600 Kcal/kg

100% substitution of NG consumption.

» BIOMASS – experience

Clean, hot air generation at AG TECNO3 (Spain)

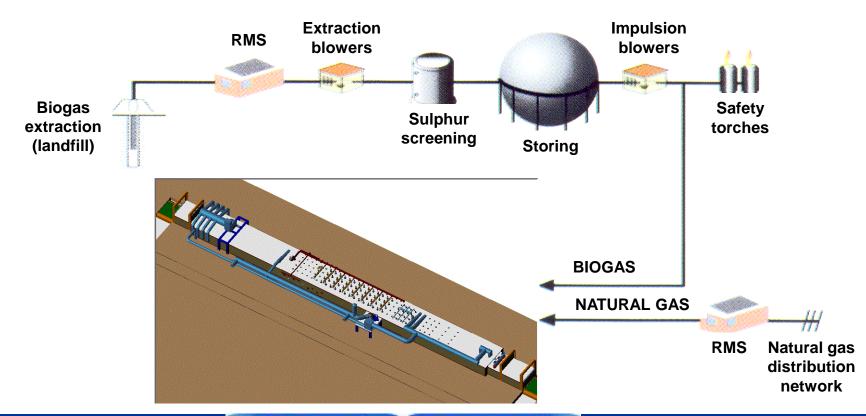
Model GBS/2000

Heat exchanger with grill

Combustion of fuel.

Exchange of heat from combustion smokes to ambience air.

Clean hot air (150°C) to dryer.



» BIOGAS

>>> BIOGAS

» BIOGAS – fuel characteristics

Gaseous fuel: difficult availability, requires co-

operation of landfill management

and administrations.

• LCV: 4.500 Kcal/Nm³ – 18.840 Kj/Nm³

Composition: > 50% Methane

Price:

CO₂ emissions coef.: NEUTRAL

» BIOGAS – technologies available

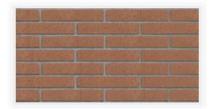
BERALMAR biogas burners models ICV/BG and FOC/BG

- Dual supply BIOGAS / NG
- Automatic switch of gas.
- Anti-corrossion components

» BIOGAS – experience

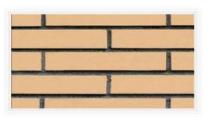
» BIOGAS – experience

Eco Klinker NEGRO


Eco Gres OXFORD Flaseado

Eco Klinker VOLGA

Eco Klinker GARROTXA


Eco Klinker MARRÓN (Brown)

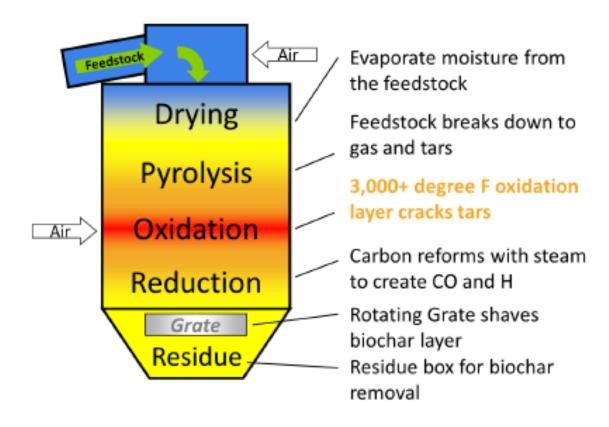
Eco Klinker Rojo

Eco Gres SAHARA

Eco Klinker TUNDRA

» BIOGAS – experience

» BIOGAS – experience



>>> SYNTHESIS GAS

>> SYNTHESIS GAS

>>> SYNTHESIS GAS – fuel characteristics

Gaseous fuel: on-site production from biomass

gasification.

LCV: 1.200 Kcal/Nm³ – 5.000 Kj/Nm³

Composition: depending on source

Price: cost of biomass + operative costs

of gasifier + 15% loss of efficience

CO₂ emissions coef.: NEUTRAL

SYNTHESIS GAS – technologies available

Biomass gasifier

- Sizeable investment but quick payback
- Tars fired in kiln: no waste management required
- Output: up to 8 MWh

>>> SYNTHESIS GAS – technologies available

Syngas burners

- Adapted Beralmar range of gas burners.
- Continuous flow of syngas from gasifier.
- When off, syngas is burnt at safety torch.

SYNTHESIS GAS – experience

First project in Spain 100% defined. Waiting for green light...!

Scope of supply:

- Biomass gasifier of 2000 kW/h (1.500.000 Kcal/h).
- Syngas high speed burners for the pre-heating zone of a tunnel kiln firing hollow blocks.

>>> RECYCLED OILS

>>> RECYCLED OILS – fuel characteristics

Liquid fuel: Collection and filtering of used car and

kitchen oils.

LCV: 9.500 Kcal/kg – 40.000 Kj/kg

Composition: depends on source.

CO₂ emiss. coef.: 73 tn CO₂/TJ

>>> RECYCLED OILS – available technologies

BERALMAR adapted injectors Model GT/99

- Output per injector: up to
 170.000 Kcal/hour / 200 kWh
- Injection by gasification.

>>> RECYCLED OILS – experience

NUEVA CERÁMICA CAMPO (Spain)

Firing of refractory bricks (up to 1.400°C)

>>> RECYCLED OILS – experience

NUEVA CERÁMICA CAMPO (Spain)

Firing of refractory bricks (up to 1.400°C)

Current fuel prices in UK

Fuel	Unit	Price (GBP)	Heat Value (Kcal)	Price (GBP/Th)	Price over NG (%)
Natural Gas	Nm³	0,27	8.600	0,031	100
Ground Petcoke	Kg	0,16	8.400	0,019	61
Mineral Coal	Kg	0,12	6.500	0,018	58
Biomass	Kg	0,06	3.600	0,017	54

Example of savings: NG to Petcoke

Production: 300 Tn/day

Specific consumption: 450 Kcal/kg

Current gas consumption: 15.700 m³/day

Future gas consumption (30%): 4.710 m³/day Future petcoke consumption (70%): 11,2 tn/day Total future energy cost:

Total savings:

4.239 GBP/day

1.272 GBP/day 1.792 GBP/day **3.064 GBP/day**

1.175 GBP/day 428.875 GBP/year

Example of savings: NG to Coal

Production: 300 Tn/day

Specific consumption: 450 Kcal/kg

Current gas consumption: 15.700 m³/day

Future gas consumption (30%): 4.710 m³/day Future coal consumption (70%): 14,5 tn/day Total future energy cost:

Total savings:

4.239 GBP/day

1.272 GBP/day 1.740 GBP/day 3.012 GBP/day

1.227 GBP/day 447.855 GBP/year

Example of savings: NG to Biomass

Production: 300 Tn/day

Specific consumption: 450 Kcal/kg

Current gas consumption: 15.700 m³/day

Future gas consumption (30%): 4.710 m³/day Future coal consumption (70%): 26,2 tn/day Total future energy cost:

Total savings:

4.239 GBP/day

1.272 GBP/day 1.572 GBP/day 2.844 GBP/day

1.395 GBP/day 509.175 GBP/year

» Other considerations

- Added costs CO₂ emissions (petcoke, coal, recycled oils).
- Added income from trade of excess of CO₂ emission rights (biomass, biogas, syngas).
- Marketing benefits: eco-branding (biomass, biogas, syngas).

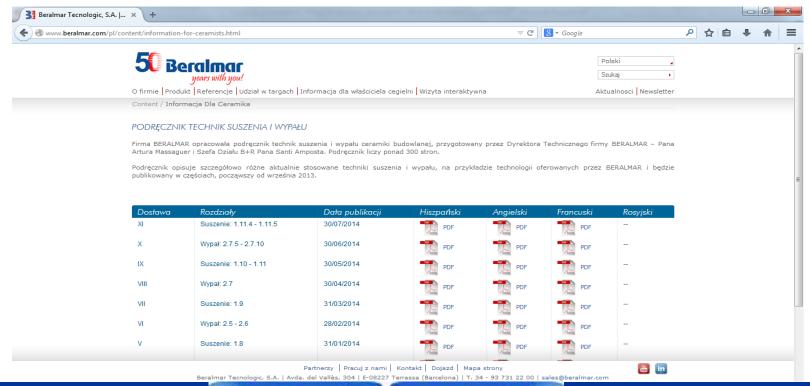
CO₂ EMISSIONS

Example: 300 tn/day production, 450 Kcal/kg consumption

Fuel	CO ₂ emission coefficient	Annual emissions	% of fuels
NATURAL GAS	56 CO ₂ /TJ	11.553 tons CO ₂	100% gas
PETCOKE	98,3 CO ₂ /TJ	17.662 tons CO ₂	30% gas 70% petcoke
MINERAL COAL	112 CO ₂ /TJ	19.640 tons CO ₂	30% gas 70% coal
RECYCLED OILS	73 CO ₂ /TJ	15.060 tons CO ₂	100% oils
BIOMASS	NEUTRAL	3.466 tons CO ₂	30% gas 70% biomass
BIOGAS	NEUTRAL	• tons CO ₂	100% biogas
SYNTHESIS GAS	NEUTRAL	• tons CO ₂	100% syngas

CONCLUSIONS

- >>> BERALMAR is a complete supplier for the brick industry.
- >>> BERALMAR has experience with many type of fuels.
- Natural gas is the best fuel there is, but not the cheapest nor the most environmentally friendly: <u>let's keep an open</u> <u>mind about alternatives.</u>
- Alternative fuels are not just about their price: added costs and benefits must also be considered.
- >>> If you find another alternative fuel, BERALMAR is willing to develop the right firing technology for you.



WEB SITE

www.beralmar.com

Site full of news and technical information

NEWSLETTER

Monthly NEWSLETTER since 2006

Distributed in 11 languages – English included

Newsletter 85 - September 2014

Approximate reading time: 5 minutes

Corporate

<u>HISTORY OF BERALMAR, 7/10: 2003-2009 - CONSOLIDATING AROUND ENGINEERING AND SOLID FUELS</u>

TWELFTH PART OF THE TREATISE ON DRYING AND FIRING

CONCLUSIONS FROM THE TECNARGILLA FAIR 2014

BERALMAR AT THE KIEV CONFERENCE ON "ENERGY EFFICIENCY IN INDUSTRY AND AGRICULTURAL-INDUSTRIAL COMPLEX"

VISIT FROM THE ASSOCIATION OF POLISH CERAMISTS

News and Accomplishments

NEW MICROMATIC INSTALLATION IN MOROCCO

Corporate

HISTORY OF BERALMAR, 7/10: 2003-2009 - CONSOLIDATING AROUND ENGINEERING AND SOLID FUELS

This period does not stand out for any remarkable organisational leap forward, but rather for steady growth based on consolidation and exploitation of the groundwork that had been previously laid.

CONTACT

BERALMAR TECNOLOGIC S.A.

Av. Vallès 304 – E-08227 Terrassa (Barcelona)

Phone: +34 937312200 | Fax: +34 937314483 | sales@beralmar.com

SANTI AMPOSTA: <u>santi.amposta@beralmar.com</u>

MIQUEL MOIX: <u>miquel.moix@beralmar.com</u>

Thank you for your kind attention!

